
Search

IBM : developerWorks : Linux overview | Open Source : Library - papers

 JFS overview
How the Journaled File System cuts system restart times to the quick

Steve Best, IBM
January 2000

Contents:
 Architecture & design

 Design features

 Internal JFS limits

 Administrative utilities

 Summary

 About the author

JFS provides fast file system restart in the event of a system crash. Using
database journaling techniques, JFS can restore a file system to a consistent
state in a matter of seconds or minutes, versus hours or days with
non-journaled file systems. This white paper gives an overview of the
architecture, and describes design features, potential limits, and
administrative utilities of the JFS technology available on developerWorks.

The Journaled File System (JFS) provides a log-based, byte-level file system
that was developed for transaction-oriented, high performance systems. Scalable and robust, its
advantage over non-journaled file systems is its quick restart capability: JFS can restore a file system
to a consistent state in a matter of seconds or minutes.

While tailored primarily for the high throughput and reliability requirements of servers (from single
processor systems to advanced multi-processor and clustered systems), JFS is also applicable to
client configurations where performance and reliability are desired.

Architecture and design
The JFS architecture can be explained in the context of its disk layout characteristics.

Logical volumes
The basis for all file system discussion is a logical volume of some sort. This could be a physical disk
or some subset of the physical disk space such as an FDISK partition. A logical volume is also
known as a disk partition.

Aggregates and filesets
The file system create utility, mkfs, creates an aggregate that is wholly contained within a partition.
An aggregate is an array of disk blocks containing a specific format that includes a superblock and an
allocation map. The superblock identifies the partition as a JFS aggregate, while the allocation map
describes the allocation state of each data block within the aggregate. The format also includes the
initial fileset and control structures necessary to describe it. The fileset is the mountable entity.

Files, directories, inodes, and addressing structures
A fileset contains files and directories. Files and directories are represented persistently by inodes;
each inode describes the attributes of the file or directory and serves as the starting point for finding
the file or directory's data on disk. JFS also uses inodes to represent other file system objects, such as
the map that describes the allocation state and location on disk of each inode in the fileset.

developerWorks : Linux | Open Source : Library - Papers

http://www-4.ibm.com/software/developer/library/jfs.html (1 of 6) [2/25/2000 11:38:11 AM]

http://www.ibm.com/
http://www.ibm.com/shop/
http://www.ibm.com/support/
http://www.ibm.com/download/
http://www.ibm.com/
http://www.ibm.com/news/
http://www.ibm.com/products/
http://www.ibm.com/services/
http://www.ibm.com/solutions/
http://www.ibm.com/ibm/
http://www.ibm.com/
http://www.ibm.com/developer/
http://www.ibm.com/developer/linux/
http://oss.software.ibm.com/developerworks/opensource/
http://www2.software.ibm.com/developer/papers.nsf/linux-papers-bytitle

Directories map user-specified names to the inodes allocated for files and directories and form the
traditional name hierarchy. Files contain user data, and there are no restrictions or formats implied in
the data. That is, user data is treated, by JFS, as an uninterpreted byte stream. Extent-based
addressing structures rooted in the inode are used for mapping file data to disk. Together, the
aggregate superblock and disk allocation map, file descriptor and inode map, inodes, directories, and
addressing structures represent JFS control structures or meta-data.

Logs
JFS logs are maintained in each aggregate and used to record information about operations on
meta-data. The log has a format that also is set by the file system creation utility. A single log may be
used simultaneously by multiple mounted filesets within the aggregate.

Design features
JFS was designed to have journaling fully integrated from the start, rather than adding journaling to
an existing file system. A number of features in JFS distinguish it from other file systems.

Journaling
JFS provides improved structural consistency and recoverability and much faster restart times than
non-journaled file systems such as HPFS, ext2, and traditional UNIX file systems. These other file
systems are subject to corruption in the event of system failure since a logical write file operation
often takes multiple media I/Os to accomplish and may not be totally reflected on the media at any
given time. These file systems rely on restart-time utilities (that is, fsck), which examine all of the
file system's meta-data (such as directories and disk addressing structures) to detect and repair
structural integrity problems. This is a time-consuming and error-prone process, which, in the worst
case, can lose or misplace data.

In contrast, JFS uses techniques originally developed for databases to log information about
operations performed on the file system meta-data as atomic transactions. In the event of a system
failure, a file system is restored to a consistent state by replaying the log and applying log records for
the appropriate transactions. The recovery time associated with this log-based approach is much
faster since the replay utility need only examine the log records produced by recent file system
activity rather than examine all file system meta-data.

Several other aspects of log-based recovery are of interest. First, JFS only logs operations on
meta-data, so replaying the log only restores the consistency of structural relationships and resource
allocation states within the file system. It does not log file data or recover this data to consistent state.
Consequently, some file data may be lost or stale after recovery, and customers with a critical need
for data consistency should use synchronous I/O.

Logging is not particularly effective in the face of media errors. Specifically, an I/O error during the
write to disk of the log or meta-data means that a time-consuming and potentially intrusive full
integrity check is required after a system crash to restore the file system to a consistent state. This
implies that bad block relocation is a key feature of any storage manager or device residing below
JFS.

JFS logging semantics are such that, when a file system operation involving meta-data changes --
that is, unlink() -- returns a successful return code, the effects of the operation have been committed
to the file system and will be seen even if the system crashes. For example, once a file has been

developerWorks : Linux | Open Source : Library - Papers

http://www-4.ibm.com/software/developer/library/jfs.html (2 of 6) [2/25/2000 11:38:11 AM]

successfully removed, it remains removed and will not reappear if the system crashes and is restarted.

The logging style introduces a synchronous write to the log disk into each inode or vfs operation that
modifies meta-data. (For the database mavens, this is a redo-only, physical after-image, write-ahead
logging protocol using a no-steal buffer policy.) In terms of performance, this compares well with
many non-journaling file systems that reply upon (multiple) careful synchronous meta-data writes for
consistency. However, it is a performance disadvantage when compared to other journaling file
systems, such as Veritas VxFS and Transarc Episode, which use different logging styles and lazily
write log data to disk. In the server environment, where multiple concurrent operations are
performed, this performance cost is reduced by group commit, which combines multiple synchronous
write operations into a single write operation. JFS logging style has been improved over time and
now provides asynchronous logging, which increases performance of the file system.

Extent-based addressing structures
JFS uses extent-based addressing structures, along with aggressive block allocation policies, to
produce compact, efficient, and scalable structures for mapping logical offsets within files to physical
addresses on disk. An extent is a sequence of contiguous blocks allocated to a file as a unit and is
described by a triple, consisting of <logical offset, length, physical>. The addressing structure is a
B+tree populated with extent descriptors (the triples above), rooted in the inode and keyed by logical
offset within the file.

Variable block size
JFS supports block sizes of 512, 1024, 2048, and 4096 bytes on a per-file system basis, allowing
users to optimize space utilization based on their application environment. Smaller block sizes reduce
the amount of internal fragmentation within files and directories and are more space efficient.
However, small blocks can increase path length since block allocation activities may occur more
often than if a large block size were used. The default block size is 4096 bytes since performance,
rather than space utilization, is generally the primary consideration for server systems.

Dynamic disk inode allocation
JFS dynamically allocates space for disk inodes as required, freeing the space when it is no longer
required. This support avoids the traditional approach of reserving a fixed amount of space for disk
inodes at the file system creation time, thus eliminating the need for users to estimate the maximum
number of files and directories that a file system will contain. Additionally, this support decouples
disk inodes from fixed disk locations.

Directory organization
Two different directory organizations are provided. The first organization is used for small
directories and stores the directory contents within the directory's inode. This eliminates the need for
separate directory block I/O as well as the need to allocate separate storage. Up to 8 entries may be
stored in-line within the inode, excluding the self(.) and parent(..) directory entries, which are stored
in separate areas of the inode.

The second organization is used for larger directories and represents each directory as a B+tree keyed
on name. It provides faster directory lookup, insertion, and deletion capabilities when compared to
traditional unsorted directory organizations.

Sparse and dense files
JFS supports both sparse and dense files, on a per-file system basis.

developerWorks : Linux | Open Source : Library - Papers

http://www-4.ibm.com/software/developer/library/jfs.html (3 of 6) [2/25/2000 11:38:11 AM]

Sparse files allow data to be written to random locations within a file without instantiating previously
unwritten intervening file blocks. The file size reported is the highest byte that has been written to,
but the actual allocation of any given block in the file does not occur until a write operation is
performed on that block. For example, suppose a new file is created in a file system designated for
sparse files. An application writes a block of data to block 100 in the file. JFS will report the size of
this file as 100 blocks, although only 1 block of disk space has been allocated to it. If the application
next reads block 50 of the file, JFS will return a block of zero-filled bytes. Suppose the application
then writes a block of data to block 50 of the file. JFS will still report the size of this file as 100
blocks, and now 2 blocks of disk space have been allocated to it. Sparse files are of interest to
applications that require a large logical space but only use a (small) subset of this space.

For dense files, disk resources are allocated to cover the file size. In the above example, the first
write (a block of data to block 100 in the file) would cause 100 blocks of disk space to be allocated to
the file. A read operation on any block that has been implicitly written to will return a block of
zero-filled bytes, just as in the case of the sparse file.

Internal JFS (potential) limits
JFS is a full 64-bit file system. All of the appropriate file system structure fields are 64-bits in size.
This allows JFS to support both large files and partitions.

File system size
The minimum file system size supported by JFS is 16 Mbytes. The maximum file system size is a
function of the file system block size and the maximum number of blocks supported by the file
system meta-data structures. JFS will support a maximum file size of 512 terabytes (with block size
512 bytes) to 4 petabytes (with block size 4 Kbytes).

File size
The maximum file size is the largest file size that virtual file system framework supports. For
example, if the frame work only supports 32-bits, then this limits the file size.

Removable media
JFS will not support diskettes as an underlying file system device.

Standard administrative utilities
JFS provides standard administration utilities for creating and maintaining file system.

Create a file system
This utility provides the JFS-specific portion of the mkfs command, initializing a JFS file system on
a specified drive. This utility operates at a low level and assumes any creation/ initialization of the
volume on which the file system is to reside is handled outside of this utility at a higher level.

Check/recover a file system
This utility provides the JFS-specific portion of the fsck command. It checks the file system for
consistency and repairs problems discovered. It replays the log and applies committed changes to the
file system meta-data. If the file system is declared clean as a result of the log replay, no further
action is taken. If the file system is not deemed clean, indicating that the log was not replayed
completely and correctly for some reason or that the file system could not be restored to a consistent
state simply by replaying the log, then a full pass of the file system is performed.

developerWorks : Linux | Open Source : Library - Papers

http://www-4.ibm.com/software/developer/library/jfs.html (4 of 6) [2/25/2000 11:38:11 AM]

In performing a full integrity check, the check/repair utility's primary goal is to achieve a reliable file
system state to prevent future file system corruption or failures, with a secondary goal of preserving
data in the face of corruption. This means the utility may throw away data in the interest of achieving
file system consistency. Specifically, data is discarded when the utility does not have the information
needed to restore a structurally inconsistent file or directory to a consistent state without making
assumptions. In the case of an inconsistent file or directory, the entire file or directory is discarded
with no attempt to save any portion. Any file or sub-directories orphaned by the deletion of the
corrupted directory are placed in the lost+found directory located at the root of the file system.

An important consideration for a file system check/repair utility is the amount of virtual memory it
requires. Traditionally, the amount of virtual memory required by these utilities is dependent on file
system size, since the bulk of the required virtual memory is used to track the allocation state of the
individual blocks in the file system. As file systems grow larger, the number of blocks increases and
so does the amount of virtual memory needed to track these blocks.

The design of the JFS check/repair utility differs in that its virtual memory requirements are dictated
by the number of files and directories (rather than the number of blocks) within the file system. The
virtual memory requirements for the JFS check/repair utility are on the order of 32 bytes per file or
directory, or approximately 32 Mbytes for a file system that contains 1 million files and directories,
regardless of the file system size. Like all other file systems, the JFS utility needs to track block
allocation states but avoids using virtual memory to do so by using a small reserved work area
located within the actual file system.

Summary
JFS is a key technology for Internet file servers since it provides fast file system restart times in the
event of a system crash. Using database journaling techniques, JFS can restore a file system to a
consistent state in a matter of seconds or minutes. In non-journaled file systems, file recovery can
take hours or days. Most file server customers cannot tolerate the downtime associated with
non-journaled file systems. Only by a technology shift to journaling could these file systems avoid
the time-consuming process of examining all of a file system's meta-data to verify/restore the file
system to a consistent state.

Resources
JFS open source, on developerWorks●

IBM makes JFS technology available for Linux , dW feature story●

About the author
Steve Best works in the Software Solutions & Strategy Division of IBM in Austin, Texas as a
member of the File System development department. Steve has worked on operating system
development in the areas of the file system, internationalization, and security. Steve is currently
working on the port of JFS to Linux. He can be reached at sbest@us.ibm.com.

developerWorks : Linux | Open Source : Library - Papers

http://www-4.ibm.com/software/developer/library/jfs.html (5 of 6) [2/25/2000 11:38:11 AM]

http://oss.software.ibm.com/developerworks/opensource/jfs
http://oss.software.ibm.com/developerworks/opensource/features/jfs_feature.html
mailto:sbest@us.ibm.com

What do you think of this article?

Killer! Good stuff So-so; not bad Needs work Lame!

Comments?

developerWorks : Linux | Open Source : Library - Papers

http://www-4.ibm.com/software/developer/library/jfs.html (6 of 6) [2/25/2000 11:38:11 AM]

http://www.ibm.com/Privacy/
http://www.ibm.com/Legal/
http://www.ibm.com/Contact/

	ibm.com
	developerWorks : Linux | Open Source : Library - Papers

	DLDDGPKEFNHKOEJGJFKFFBIKGJMNBBKE:
	form1:
	x:
	f1: 9
	f2: shop
	f3:

	f4:

	form2:
	x:
	f1: JFS overview
	f2: Linux
	f3: http://www.ibm.com/developer/beta-feedback-thankyou.html
	f4: Off
	f5:

	f6:

